Return to First Half
Return to Second Half
More Publications (1973-2006)


Angiosperm Phylogeny Group (APG II), 2003. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II. Botanical Journal of the Linnean Society 141: 399-436.

Arber, E.A.N. and Parkin, J., 1907. On the origin of angiosperms. Botanical Journal of the Linnean Society of London 38: 29-80.

Arber,  A., 1925. Monocotyledons, a morphological study. Reprinted 1961 by J. Cramer and Weinheim (eds.), Wheldon & Wesley, LTD. and Hafner Publishing Co., New York. 258 p.

Ash, S.R., 1972. Late Triassic plants from the Chinle Formation in north-eastern Arizona. Palaeont., 15: 598-618.

Ash, S.R., 1976. Occurrence of the controversial plant fossil Sanmiguelia in the Upper Triassic of Texas. Jour. Paleont., 50(5): 799-804.

Ash, S.R., 1986. Fossil plants and the Triassic-Jurassic boundary. In: Padian, K. (Ed.), The Beginning of the Age of Dinosaurs: 21-30. Cambridge Univ. Press, Cambridge, UK.

Ash, S.R., 1987. The Upper Triassic red bed flora of the Colorado Plateau, Western United States. Jour. Arizona-Nevada Academy Science, 22: 95-105.

Axelrod, D.I., 1952. A theory of angiosperm evolution. Evolution 6: 29-60.

Axelrod, D.I., 1961. How old are the angiosperms? American Journal of Science 259: 447-459.

Axelrod, D.I., 1970. Mesozoic paleogeography and early angiosperm history. Botanical Review 36: 277-319.

Barrett, P.M. and Willis, K.J., 2001. Did dinosaurs invent flowers? Dinosaur–angiosperm coevolution revisited. Biol. Rev. Camb. Philos. Soc. 76, 411–447

Becker, H.F., 1964. Paleobotanical exploits in Colorado and Kansas, Garden J. (N.Y.B.G.), V. 14, No. 6: 231-233.

Becker, H.F., 1972. Sanmiguelia, an enigma compounded, Palaeont. Abt. B, V. 138: 181-185.

Bakker R.T., 1978. Dinosaur feeding behavior and the origin of flowering plants. Nature, 274: 661-3.

Barkman, T.J., Chenery, G., McNeal, J.R., Lyons-Weiler, J., and dePamphilis, C.W., 2000. Evolutionary genomic analyses converge on basal angiosperm phylogeny. Proc. Natl. Acad. Sci. USA 97: 13166-13171.

Bowe, L.M., Coat, G., and dePamphilis, C.W., in press. Phylogeny of seed plants based on all three plant genomic compartments: extant gymnosperms are monophyletic and Gnetales are derived conifers.

Brenner, G.J., 1996. Evidence for the earliest stage of angiosperm pollen evolution: a paleoequatorial section from Israel. In Taylor, D.W. and Hickey, L.J., Flowering Plant Origin, Evolution & Phylogeny 5: 91-115. Chapman & Hall, New York.

Brenner, S., Shrock, W., Shade, A., Swartzentruber, G., and Wilber, K., 2003. On the origin of angiosperms: The Euanthial and Paleoherb debate. Journal of Systematic Biology at Susquehanna University 10(4):

Brugman, W.A., 1983. Permian-Triassic palynology. Laboratory of Palaeobotany and Palynology. State University Utrecht, Utrecht, The Netherlands, 121 p.

Brown, R.W., 1956. Palm-like plant s from the Dolores Formation (Triassic), southwestern Colorado, U.S. Geol. Surv. Prof. Pap. 274-H: 205-209.

Burger, W.C., 1981. Heresy Revised: the monocot theory of angiosperm origin. Evolutionary Theory, 5: 189-225.

Cai, Z., Penaflor, C., V Kuehl, V., Leebens-Mack, J, Carlson, J., dePamphilis, C., Boore, J., and Jansen, R., 2006. Complete plastid genome sequences of Drimys, Liriodendron, and Piper: implications for the phylogenetic relationships of magnoliids. BMC Evol. Biol., 6: 77. Published online 2006 October 4. doi: 10.1186/1471-2148-6-77.

Chanda, S., Lugardon, B., and Thanikaimoni, G., 1978. On the ultrastructure of pollen aperture in Calectasia R. Br. (Xanthorrhoeaceae). Pollen et Spore, XX (3): 351-365.

Chaw, S.M., Zharkikh, A., Sung, H.M., Lau, T.C., and Li, W.H., 1997. Molecular phylogeny of extant gymnosperms and seed plant evolution: analysis of nuclear 18S rRNA sequences. Mol. Biol. Evol. 14: 56-68.

Chaw, SM, Parkinson, C., Cheng, Y, Vincent, T.M., Palmer, J.D., 2000. Seed plant phylogeny inferred from all three plant genomes; monophyly of gymnosperms and the origin of Gnetales from conifers. PNAS 97: G4086-4091.

Cornet, B., 1977a. Preliminary investigation of two Late Triassic conifers from York county, Pennsylvania.

Cornet, B., 1977b. The palynostratigraphy and age of the Newark Supergroup. unpublished Ph.D. thesis, The Pennsylvania State University, 505 p.

Cornet, B., 1986. The reproductive structures and leaf venation of a Late Triasic angiosperm, Sanmiguelia lewisii. Evol. Theory 7: 231-309.

Cornet, B., 1989a. Late Triasic angiosperm-like pollen from the Richmond rift basin of Virginia, USA. Palaeontogr. Abt. B 213: 37-87.

Cornet, B., 1989b. The reproductive morphology and biology of Sanmiguelia lewisii, and its bearing on angiosperm evolution in the Late Triassic. Evol. Trends in Plants 3: 25-51.

Cornet, B. and Olsen, P.E., 1990. Early to middle Carnian (Triassic) flora and fauna of the Richmond and Taylorsville basins, Virginia and Maryland, U.S.A. Guidebook No. 1, Virginia Museum of Natural History, Martinsville, VA. 87 p.

Cornet, B., 1993a. Dicot-like leaf and flowers from the Late Triassic tropical Newark Supergroup rift zone, U.S.A. Mod. Geol. 19: 81-99.

Cornet, B., 1993b. Applications and limitations of palynology in age, climatic, and paleoenvironmental analyses of Triassic sequences in North America. In Lucas and Morales (eds.), The Nonmarine Triassic. New Mexico Museum of Natural History & Science Bulletin, 3: 75-93.

Cornet, B., 1996. A new gnetophyte from the Late Carnian (Late Triassic) of Texas and its bearing on the origin of the angiosperm carpel and stamen. In Taylor, D.W. and Hickey, L.J. (eds.), Flowering Plant Origin, Evolution & Phylogeny. Chapter 3: 32-67. Chapman & Hall, New York.

Cornet, B., and Habib, D., 1992. Angosperm-like pollen from the ammonite-dated Oxfordian (Upper Jurassic) of France. Rev. Palaeobot. Palynol. 71: 269-294.

Cornet, B. and Olsen, P.E., 1985. A summary of the biostratigraphy of the Newark Supergroup of eastern North America with comments on early Mesozoic provinciality. In Weber, R. (ed.), III Congresso Latinoamericano de Paleontologia. Mexico. Simposio Sobre Floras del Triasico Tardio, su Fitogeografia y Paleoecologia, Memoria: 67-81.

Cornet, B., and Traverse, A., 1975. Palynological contributions to the chronology and stratigraphy of the Hartford basin in Connecticut and Massachusetts. Geoscience and Man, XI: 1-33.

Cornet, B. and Waanders, G., 2006. Palynomorphs indicate Hettangian (Early Jurassic) age for middle Whitmore Point Member of the Moenave Formation, Utah and Arizona. In Harris et al., eds., Terrestrial Triassic-Jurassic Transition. New Mexico Museum of Natural History and Science Bulletin 37: 1-17.

Crane, P.R. and Dilcher, D.L., 1984. Lesqueria: An early angiosperm fruiting axis from the mid-Cretaceous. Ann. Missouri Bot. Gard. 71: 384-402.

Crane, P.R., Friis, E.M., and Pedersen, K.R., 1995. The origin and early diversification of angiosperms. Nature (London) 374, 27-33.

Crepet, W.L., 2000. Progress in understanding angiosperm history, success, and relationships: Darwin's abominably "perplexing phenomenon". Proc. Natl. Acad. Sci. USA, Commentary, 97(24): 12939-12941.

Cronquist, A., 1968. The evolution and classification of flowering plants. Houghton Mifflin Co., Boston. 1-396.

da Costa-Nunes, J.S. and Grossniklaus, U., 2003. Unveiling the gene-expression profile of pollen. Genome Biology, 5:205.

Danzé-Corsin, P. and Laveine, J.-P.,1963. Microflore. In Briche, P., Danzé-Corsin, P., and Laveine, J.-P. (eds.), Flore infraliassique du Boulannais (Macro- et Microflore). Annales de la Société Géologique du Nord, Mémoire., 13: 57-135.

Davidson, J.S., 2000. An evolutionary manifesto: A new hypothesis for organic change.

de Boer, J.Z., Ernst, R.E., and Lindsey, A.G., 2003. Evidence for predominant lateral magma flow along major feeder-dike segments of the eastern North America swarm based on Magnetic fabric. In Letourneau, P.M. and Olsen, P.E. (eds.), The Great Rift Valleys of Pangea in Eastern North America. Vol. 1, Tectonics, Structure, and Volcanism. Columbia University Press, New York: 189-206.

De Bodt, S., Maere, S., and Van de Peer, Yves, 2005. Genome duplication and the origin of angiosperms. Trends in Ecology and Evolution 20(11): 591-597.

Delevoryas, T., 1970. Plant life in the Triassic of North Carolina. Discovery, 6: 15-22.

Delevoryas, T. and Hope, R. C., 1973. Fertile coniferophyte remains from the Late Triassic Deep River Basin, North Carolina. Amer. J. Bot., 60: 810-818.

Delevoryas, T. and Hope, R. C., 1975. Voltzia andrewsii, n. sp., an Upper Triassic seed cone from North Carolina, U.S.A. Rev. Palaeo bot. Palynol., 20: 67-74.

Delevoryas, T. and Hope, R. C., 1981. More evidence for conifer diversity in the Upper Triassic of North Carolina. Amer. J. Bot., 68: 1003-1007.

Dilcher, D.L. and Crane, P.R., 1984. Archaeanthus: An early angiosperm from the Cenomanian of the Western Interior of North America. Ann. Missouri Bot. Gard. 71: 351-383.

Doyle, J.A., 1969. Cretaceous angiosperm pollen of the Atlantic Coastal Plain and its evolutionary significance.  J. Arnold Arboretum 50: 1-35.

Doyle, J.A., 1973. The monocotyledons: Their evolution and comparative biology. V. Fossil evidence on early evolution of the monocotyledons. The Quart. Rev. Biol. 48(3): 399-413.

Doyle, J.A., 1977. Patterns of Evolution in Early Angiosperms.  In Hallam, A. (ed.), Patterns of Evolution. Elsevier Scientific Publishing Company, Amsterdam. Chapter 16: 501-546.

Doyle, J.A., 1978. Potentials and Limitations of Exine Structure in Studies of Early Angiosperm Evolution. Cour. Forsch.-Inst. Senckenberg 30: 54-61.

Doyle, J.A., 1998. Phylogeny of Vascular Plants. Annu. Rev. Ecol. Syst. 29: 567-599.

Doyle, J.A., 2001. Significance of molecular phylogenetic analyses for paleobotanical investigations on the origin of angiosperms. Palaeobotanist 50: 167-188.

Doyle, J.A., 2005. Early evolution of angiosperm pollen as inferred from molecular and morphological phylogenetic analyses. Grana 44: 227-251.

Doyle, J.A., Biens, P. Doerenkamp, A., and Jardiné, S., 1977. Angiosperm pollen from the pre-Albian Lower Cretaceous of Equatorial Africa. Bull. Cent. Rech. Explor.-Prod. Elf-Aquitaine 1: 451-473.

Doyle, J.A. and Donoghue, M.J., 1986. Seed plant phylogeny and the origin of angiosperms: an experimental cladistic approach. Bot. Rev. 52: 321-431.

Doyle, J.A. and Donoghue, M.J., 1987. Relationships of angiosperms and Gnetales: a numerical cladistic analysis. In Spicer, R.A. and Thomas, B.A. (eds.), Systematic and Taxonomic Approaches in Palaeobotany. Syst. Assoc. Spec. 31: 177-198. Clarendon Press, Oxford.

Doyle, J.A. and Donoghue, M.J., 1993. Phylogenies and angiosperm diversification. Paleobiology 19(2): 141-167.

Doyle, J.A., Hotton, C.L., and Ward, J.V., 1990. Early Cretaceous tetrads, zonasulculate pollen, and Winteraceae. I. Taxonomy, morphology, and ultrastructure. Amer. J. Sci. 77(12): 1544-1557.

Doyle, J.A. and Endress, P.K., 2000. Morphological phylogenetic analysis of basal angiosperms: comparison and combination with molecular data. Int. J. Plant Sci. 161(6 Suppl.): 5121-5153.

Doyle, J.A., 2000. Paleobotany, relationships, and geographic history of Winteraceae. Ann. Missouri Bot. Gard. 87: 303-316.

Doyle, J.A., Van Campo, M., and Lugardon, B., 1975. Observations on exine structure of Eucommiidites and Lower Cretaceous angiosperm pollen. Pollen et Spores XVII(3): 429-486.

Donoghue, M.J. and Doyle, J.A., 2000. Seed plant phylogeny: Demise of the anthophyte hypothesis? Current Biology 10: R106-R109.

Dunay, R.E., and Fisher; M.J., 1974. Late Triassic palynofloras of North America and their European correlatives. Review of Palaeobotany and Palynology 17: 179-186.

Ecklund, H., Doyle, J.A., and Herendeen, P.S., 2004. Morphological phylogenetic analysis of living and fossil Chloranthaceae. Int. J. Plant Sci. 165(1): 107-151.

Endress, P.K., 1987. The Chloranthaceae: reproductive structures and phylogenetic position. Bot. Jahrb. Syst., 109(2): 153-226.

Endress, P.K., 1999. Evolution of reproductive structures and functions in primitive angiosperms (Magnoliidae). Memoirs of the New York Botanical Garden, 55: 5-34.

Esau, K., 1966. Anatomy of Seed Plants. John Wiley and Sons, Inc., New York, 376 p.

Feldman, R.S., 2008. Understanding Psychology. McGraw Hill, Eighth Edition, 621 p.

Felix, C.J. and Burbridge, P.P., 1977. A new Ricciisporites from the Triassic of Arctic Canada. Palaeont. 20(3): 581-587.

Fischer, M.J., 1972. The Triassic palynofloral succession in England. Geoscience and Man 4: 101-109.

Foster, C.B. and Price, P.L., 1981. Exine ultrastructure of Praecolpatites sinuosus (Balme & Hennelly) Bharadwaj & Srivastava, 1969 and Marsupipollenites triradiatus Balme & Hennelly, 1956. Palaeobotanist 28 & 29: 177-187.

Fowell, S.J., Cornet, B., and Olsen, P.E., 1994. Geologically rapid Late Triassic extinctions: Palynological evidence from the Newark Supergroup, in Klein, G. D. (ed.), Pangea: Paleoclimate, Tectonics, and Sedimentation During Accretion, Zenith, and Breakup of a Supercontinent: Boulder, Colorado, Geological Society of America Special Paper 288.  

Fowell, S.J. and Traverse, A., 1995. Palynology and age of the upper Blomidon Formation, Fundy basin, Nova Scotia. Rev. Paleobot. Palynol. 86: 211-233.

Friedman, W.E. and Carmichael, J.S., 1996. Evolution of fertilization patterns in Gnetales: implications for understanding reproductive diversification among anthophytes. International Journal of Plant Sciences 157 (6) (supplement): 77-94.

Friedman, W.E. and Williams, J.H., 2004. Developmental Evolution of the Sexual Process in Ancient Flowering Plant Lineages. The Plant Cell 16: S119-S132.

Friis, E.M. and Pedersen, K.R., 1996. Eucommiitheca, a new pollen organ with Eucommiidites pollen from the Early Cretaceous of Portugal. Grana 35: 104-112.

Friis, E.M., Pedersen, K. R., and Crane, P. R., 2001. Fossil evidence of water lilies (Nymphaeales) in the Early Cretaceous. Nature 410:357-360.

Friis, E.M., Pedersen, K. R., and Crane, P.R. 2004. Araceae from the Early Cretaceous of Portugal: Evidence on the energence of monocotyledons. PNAS, 101 (47): 16565-16570.

Friis, E.M. and Crane, P.R., 2007. New home for tiny aquatics. Nature 446: 269-270.

Gandolfo, M.A., Nixon, K.C., and Crepet,W.L., 2002. Triuridaceae fossil flowers from the Upper Cretaceous of New Jersey. American Journal of Botany, 89(12): 1940-1957.

Gehrman, E., 2002. Brian Farrel meets the beetles. Harvard University Gazette, October 31 issue.

Gifford, E.M. and Foster, A.S., 1989. Morphology and evolution of vascular plants (Third Ed.). W.H. Friedman and Company, New York, 626 p.

Grimaldi, D.A., 1999. The co-radiations of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden 86, 373-406.

Hansen, A., Hansmann, S., Samigullin, T., Antonov, A., and Martin, W., 1999. Gnetum and the angiosperms: molecular evidence that their shared morphological characters are convergent, rather than homologous. Mol. Biol. Evol. 16: 1006-1009.

Harris, T.M., 1979. The Yorkshire Jurassic flora. V. Coniferales. British Museum (Natural History), London, 167 pp.

Herendeen, P.S., and Crane, P.R., 1995. The fossil history of the monocotyledons. In Rudall, P.J., Cribb, P.J., Cutler, D.F., and Humphries, C.J. (eds.), Monocotyledons: systematics and evolution, Royal Botanic Gardens, Kew: 1-21.

Herngreen, G.F.W. and DeBoer, K.F., 1974. Palynology of Rhaetian, Liassic, and Dogger strata in the Eastern Netherlands. Geologie en Mijnbouw 53: 343-368.

Hickey, L.J. and Doyle, J.A., 1977. Early Cretaceous fossil evidence for angiosperm evolution. Bot. Rev. 43: 3-104.

Hochuli, P. and Feist-Burkhardt, S., 2004. A boreal early cradle of Angiosperms? Angiosperm-like pollen from the Middle Triassic of the Barents Sea (Norway). J. Micropalaeontol. 23(2): 97-104.

Huang, T-C., 1972. Pollen flora of Taiwan. National Taiwan University, Botany Department Press. 297 p.

Hughes, N.F., 1961. Fossil evidence and angiosperm ancestry. Science Progress 49: 84-102.

Hughes, N.F., 1976. Palaeobiology of angiosperm origins. Cambridge University Press, Cambridge.

Jung, W.W., 1968. Hirmerella münsteri (Schenk) Jung nov. comb. eine Bedeutsame Konifere des Mesozoikums. Palaeontographica B, 122: 55-93.

Kendall, M.W., 1947. On five species of Brachyphyllum from the Jurassic of Yorkshire and Wiltshire. Ann. Mag. Nat. Hist., 14: 226-251.

Kendall, M.W., 1948. On six species of Pagiophyllum from the Jurassic of Yorkshire and southern England. Ann. Mag. Nat. Hist., 1: 73-108.

Kendall, M.W., 1949. On a new conifer from the Scottish Lias. Ann. Mag. Nat. Hist., 2: 299-307.

Kendall, M.W., 1952. Some conifers from the Jurassic of England. Ann. Mag. Nat. Hist., 54: 583-593.

Kent, D.V. and Olsen, P.E., 2000. Implications of astronomical climate cycles to the chronology of the Triassic. Zbl. Geol. Paläont. I: 1463-1473.

Kirkland, J.I., Lockley, M., and Milner, A.R., 2002. The St. George Dinosaur Tracksite. Survey Notes, Utah Geol. Surv. 34(3): 4-5.

Klitgord, K.D., Hutchinson, D.R., and Schouten, H., 1988. U.S. Atlantic continental margin; Structural and tectonic framework, Chapter 3. In Sheridan, R.E. and Grow, J.A., The Geology of North America, Vol. 1-2. The Atlantic Margin: U.S., The Geological Society of America: 19-55.

Kuprianova, L.A., 1979. On the possibility of the development of tricolpate pollen from monosulcate. Grana 18: 1-4.

Labandeira, C.C., Eble, G.J., and Santa Fe Institute, 2001. The Fossil Record of Insect Diversity and Disparity.

Litwin, R.J., Traverse, A., and Ash, S.R., 1991. Preliminary palynological zonation of the Chinle Formation, southwestern U.S.A., and its correlation to the Newark Supergroup (eastern U.S.A.).  Review of Palaeobotany and Palynology, 68: 269-287.

Liu, Z., 2005a. Jurassic sporopollen provinces of China. In Sha, J. and Wang, Y. (eds.), Abstracts, International Symposium on the Jurassic boundary events, The first symposium of the International Geoscience Program IGCP 506: 55-56.

Liu, Z., 2005b. Palynological assemblages of the Late Triassic and Lower Jurassic and Triassic-Jurassic boundary in the Kuqa depression of the Tarim basin, Xinjiang, NW China. In Sha, J. and Wang, Y. (eds.), Abstracts, International Symposium on the Jurassic boundary events, The first symposium of the International Geoscience Program IGCP 506: 53-54.

Lupia, R., 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology 25(1): 1-28.

Lupia, R., Lidgard, S., and Crane, P.R., 1999. Comparing palynological abundance and diversity: implications for biotic replacement during the Cretaceous angiosperm radiation. Paleobiology 25(1): 305-340.

Lupia, R., Crane, P.R., and Lidgard, S., 2000. Angiosperm diversification and Cretaceous environmental change. In Culver, S.J. and Rawson, P.F. (eds.), Biotic Response to Global Change, The Last 145 Million Years 15: 207-222. Cambridge University Press, U.K.

Manspeizer, W. and Cousminer, H.L., 1988. Late Triassic-Early Jurassic synrift basins of the U.S. Atlantic margin. In Sheridan, R.E. and Grow, J.A., The Geology of North America, Vol. 1-2. The Atlantic Margin: U.S., The Geological Society of America: 197-216.

Martin, W., Gieri, A. and Saedler, H., 1989. Molecular evidence for pre-Cretaceous angiosperm origins. Nature 339(4 May): 46-48.

Martin, W., Lydiate, D., Brinkmann, H., Forkmann, G., Saedler, H., and Cerff, R., 1993. Molecular Phylogenies in Angiosperm Evolution. Mol. Biol. Evol. 10(1): 140-162.

Meng, F. and Chen, H., 2005. Studies on the boundary between Triassic and Jurassic systems in the Sichuan basin, China. In Sha, J. and Wang, Y. (eds.), Abstracts, International Symposium on the Jurassic boundary events, The first symposium of the International Geoscience Program IGCP 506: 58-59.

Miller, J.M., 1989. The archaic flowering plant family Degeneriaceae: Its bearing on an old enigma. National Geographic Research 5(2): 218-231.

Molnar, S., 2001. Angiosperm origins and evolution.

Monroe, J.S. and Wicander, R., 2001. The Changing Earth, Exploring Geology and Evolution. Brooks/Cole, Pacific Grove, CA., 3rd edition: 733 pp.

Nilsson, T., 1958. Über das Vorkommen eines mesozoischen Sapropelgesteins in Schonen. Publ. Inst. Miner. Paleont. Quat. Geol. Lund 53: 1-111.

Olsen, P.E. and Kent, D.V., 2000. High-resolution early Mesozoic Pangean climatic transect in lacustrine environments. Zbl. Geol. Paläont. I: 1475-1495.

Olsen, P.E., Kent, D.V., Cornet, B., Witte, W.K., and Schlische, R.W., 1996. High-resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America. GSA Bulletin 108: 40-77.

Olsen, P.E. and McHone, J.G., 2003. Introduction to Part II, The Central Atlantic large Igneous Province. In Letourneau, P.M. and Olsen, P.E. (eds.), The Great Rift Valleys of Pangea in Eastern North America. Vol. 1, Tectonics, Structure, and Volcanism. Columbia University Press, New York: 137-140.

Olsen, P.E., Whiteside, J.H., Et-Touhami, M., Kent, D.V., Fowell, S.J., 2004. Stratigraphic Relationship between the continental Triassic-Jurassic boundary and the Central Atlantic Magmatic Province in Eastern North America and Morocco. International Geological Congress, Florence, Florence, Italy, August 20-28; Abstracts.

Olsen, P.E., Kent, D.V., Whiteside, J.H., 2005. Towards an astronomically calibrated timescale for the Jurassic. Abstracts for International Symposium on the Jurassic Boundary Events, The First Symposium of IGCP 506, Nov. 1-4, 2005, Nanjing, China, p. 64-65. (download a .pdf of the abstract).

Pedersen, K. R., Crane, P. R., and Friis, E. M., 1989. Pollen organs and seeds with Eucommiidites pollen. Grana 28: 279-294.

Perkins, B.F., Langstron Jr., W., and Stone, J.F., 1979. Lower Cretaceous shallow marine environments in the Glen Rose Formation: Dinosaur tracks and plants. American Association of Stratigraphic Palynologists, Field Trip Guide, 12th Ann. Meet., 55 p.

Pieñkowski, G. and Waksmundzka, M., 2005. Rhaetian/Hettangiang boundary in Pomerania, Poland. In Sha, J. and Wang, Y. (eds.), Abstracts, International Symposium on the Jurassic boundary events, The first symposium of the International Geoscience Program IGCP 506: 72-73.

Friis, E. M., Pedersen, K. R. and Crane, P. R., 2000. Sixth Conference, International Organization of Paleobotany, July 31-August 3, 2000, Qinhuangdao, China, 36-37.

Pflug, H. 1953. Zur Entstung und Entwicklung des angiospermiden Pollens in der Erdgeschichte. Palaeontogr. Abt. B 95: 60-171.

Pocock, S.A.J. and Vasanthy, G., 1988. Cornetipollis reticulata, a new pollen with angiospermid features from Upper Triassic (Carnian) sediments of Arizona (U.S.A.), with notes on Equisetosporites. Rev. Paleobot. Palynol., 55: 337-356.

Pocock, S.A.J., Vasanthy, G., Venkatachala, B.S., 1990. Pollen of Circumpolles - An enigma or morphotrends showing evolutionary adaptation. Rev. Paleobot. Palynol., 65: 179-193.

Praglowski, J., 1974. Magnoliaceae Juss. World Pollen and Spore Flora 3. The Almqvist & Wiksell Periodical Company, Stockholm, 44 p.

Raven, P. H. and Axelrod, D.I., 1974. Angiosperm biogeography and past continental movements. Annals of the Missouri Botanical Garden 61:539-673.

Retallack, G. and D.L. Dilcher, 1981. A Coastal theory of flowering plant origin. In Niklas, K.J., Paleobotany, Paleoecology, and Evolution. Praeger Publishers, N.Y. Chapter 2: 27-77.

Retallack, G. and Dilcher, D.L., 1986. Cretaceous angiosperm invasion of North America. Cretaceous Research, 7: 227-252. Academic Press Inc., Ltd., London.

Reyre, Y., 1973. Palynologie du Mésozoque Saharien. Mémoires du Muséum National d'Histoire Naturelle, Series C: 27, 284 p.

Saarela, J.M., Rai1, H.S., Doyle, J.A., Endress, P.K., Mathews, S., Marchant, A.D., Briggs, B.G., and Graham, S.W., 2007. Hydatellaceae identified as a new branch near the base of the angiosperm phylogenetic tree. Nature 446: 312-315.

Samson, F.B., 1993. Pollen morphology of the Amborellaceae and Hortoniaceae (Hortonioideae: Monimiaceae). Grana 32: 154-162.

Sanderson, M.J. and Doyle, J.A., 2001. Sources of error and confidence intervals in estimating the age of angiosperms from rbcL and 18S rDNA data. Amer. J. Bot. 88(8): 1499-1516.

Scheuring, B.W., 1970. Palynologisches und palynostratigraphische Untersuchungen des Keupers im Bölchentunnel (Solothurner Jura): Schweizerischen Paläontology Abh., 88: 119 p.

Scott, R.A., Barghoorn, E.S., and Leopold, E.B., 1960. How old are the angiosperms? American Journal of Science 258-A: 284-299.

Schultz, G. and Hope, R. C., 1973. Late Triassic microfossil flora from the Deep River Basin, North Carolina. Palaeont. Abt. B, 141: 63-88.

Shaw, J., 2003. Brian Farrel in Budgom. Harvard Magazine, September-October edition.

Shwartz, M., 2002. Mating molds provide new insights into human reproduction and the origin of species. Stanford Reporter February 8.

Shiu, P. K.T., Raju, N. B., Zickler, D., and Metzenberg, R. L., 2002. Meiotic Silencing by Unpaired DNA. Cell 107: 905-916.

Soltis, P.S., D. E. Soltis, and C. E. Edwards. 2005.  Angiosperms:   Tree of Life web project.       

Starr, C., 1997. Biology, concepts and applications. Wadsworth Publishing Company (an International Thomsom Publishing Company), Belmont, CA, 743 p.

Stewart, W.N. and Rothwell, G.W., 1993. Paleobotany and the evolution of plants. Cambridge Univ. Press, second edition. New York, NY, 521 p.

Sun, G., Dilcher, D.L., Zheng, Z., and Zhou, Z., 1998. In Search of the First Flower: A Jurassic Angiosperm, Archaefructus, from Northeast China. Science 282: 1692-1695.

Sun, G., Qiang, J., Dilcher, D.L., Zheng, S., Nixon, K.C., and Wang, X., 2002. Archaefructaceae, a new basal angiosperm family. Science 296: 899-904.

Schweitzer, H.-J., 1977. Die raeto-jurassischen Floren des Iran und Afghanistans. 4. Die raetische Zwitterblfite Irania hermaphroditica nov. spec. und ihre Bedeutung fir die Phylogenie der Angiospermen. Palaeontographica B, 161 (1/4): 98-145 (with English summary).

Schweitzer, H.-J., 1978. The derivation of the hermaphroditic flower of the angiosperms by consideration of new fossils from the Rhaetic of Iran. Cour. Forsch. -Inst. Senchenberg, 30: 16-26.

Swisher et al., 1999 (incomplete reference given at

Takhtajan, A.L., 1959. Die Evolution der Angiospermen. VEB Gustav Fischer Verlag. Jena. 1-334.

Tanner, L.H., Lucas, S.G., and Chapman, M.G., 2003. Assessing the record and causes of Late Triassic extinctions. Earth-Science Reviews 65: 103-139

Taylor, D.W. and Kirchner, G., 1996. The origin and evolution of the angiosperm carpel. In Taylor, D.W. and Hickey, L.J. (eds.), Flowering Plant Origin, Evolution & Phylogeny. Chapter 3: 116-140. Chapman & Hall, New York.

Taylor, T.N. and Taylor, E.L., 1993. The biology and evolution of fossil plants. Prentice Hall, Englewood Cliffs, NJ, 982 p.

Thanikaimoni, G., 1969. ESQUISSE PALYNOLOGIQUE DES ARACÉES. Institut Français de Pondichéry, 29 p.

Tidwell, W.D., Simper, A.D., and Thayn, G.F., 1977. Additional information concerning the controversial Triassic plant: Sanmiguelia. Palaeontogr. Abt. B 163: 143-151.

Traverse, A., 1988. Plant evolution dances to a different beat. Hist. Biol. 1: 277-301.

Vasanthy, G., Cornet, B., and Pocock, S.A.J., 2004. Evolution of proangiosperms during Late Triassic: pre-Cretaceous pollen trends towards mono- and dicotyledonous taxa diversification. Geophytology, 33(1&2): 99-113.

Vajda, V. and Raine, J.I., 2005. A global correlation of the Triassic - Jurassic boundary, with the end-Cretaceous palynological signal as a key? In Sha, J. and Wang, Y. (eds.), Abstracts, International Symposium on the Jurassic boundary events, The first symposium of the International Geoscience Program IGCP 506: 83-84.

Vasanthy, G. and Pocock, S.A.J., 1986. Radial through rotated symmetry of striate pollen of the Acanthaceae. Can. J. Bot., 64: 3050-3058.

Vasanthy, G., Venkatachala, B.S., Pocock, S.A.J., 1990. The evolution of angiospermid pollen characteristics: conjectures and queries. Paleobotanist, 38: 131-146.

Venkatachala, B.S. and Goçzan, F., 1964. The spore-pollen flora of the Hungarian "Kossen facies". Acta Geol Sci Hungary, 8: 203-228.

Vigran J.O. and Thusu, B., 1975. Illustrations of Norwegian Microfossils, Illustrations and distribution of the Jurassic Palynomorphs of Norway. Royal Norwegian Council for Scientific and Industrial Research (NTNF), Continental Shelf Division, 65: 1-55.

Walker, J.W. and Doyle, J.A., 1975. The Bases of Angiosperm Phylogeny: Palynology. Annals of the Missouri Botanical Garden 62(3): 664-723.

Wan, C., Xu, Y., Feng, Z., Qiao, X., Jin, Y., Liu, T., and Zhao, J., 2005. In Sha, J. and Wang, Y. (eds.), Abstracts, International Symposium on the Jurassic boundary events, The first symposium of the International Geoscience Program IGCP 506: 85-86.

Wang, Y., Saiki, K., Zhang, W., and Zheng, S., 2005. Biodiversity and palaeoclimate of the Middle Jurassic floras from the Lanqi Formation in western Liaoning, China. In Sha, J. and Wang, Y. (eds.), Abstracts, International Symposium on the Jurassic boundary events, The first symposium of the International Geoscience Program IGCP 506: 92.

Wang, Y., Cao, Z., Thevenard, F., 2005. Additional data on Todites (Osmundaceae, Filicales) from the Lower Jurassic - with special references to the paleogeographical and stratigraphical distributions in China. In Sha, J. and Wang, Y. (eds.), Abstracts, International Symposium on the Jurassic boundary events, The first symposium of the International Geoscience Program IGCP 506: 93-94.

Wang, X, Geng, B., Cui, J., and Yang, Y.,2007. Schmeissneria: A missing link to angiosperms?  BMC Evolutionary Biology 7: 14.

Ward, J.W., Doyle, J.A., and Hotton, C.L., 1989. Probable granular magnoliid angiosperm pollen from the Early Cretaceous. Pollen et Spores XXXI: 113-132.

Weber, R., 1985. Las plantas fosiles de la formacion Santa Clara (Triassico Tardio, Sonora, Mexico): Estabo actual de las investigaciones. In Weber, R. (ed.), III Congresso Latinoamericano de Paleontologia. Mexico. Simposio Sobre Floras del Triasico Tardio, su Fitogeografia y Paleoecologia, Memoria: 67-81.

Whiteside, J.H., Olsen, P.E., Sambrotto, R.N., and Cornet, B., 2004. Milankovitch modulation of d13Corg and fish communities in the tropical great lakes of the Triassic-Jurassic Pangean rift system. Geophysical Research Abstracts, v. 6, 07738.

Whiteside, J.H., Olsen, P.E., Kent, D.V., 2005. Intensification of Milankovitch cycles associated with the Triassic-Jurassic super-greenhouse. Geophysical Research Abstracts (EGU 05-A-10827). (download a .pdf of the abstract).

Williams, J.H. and Friedman, W.E., (2002). Identification of diploid endosperm in an early angiosperm. Nature 415: 522 - 526.

Winter, K.U., Becher, A., Münster, T., Kim, J.T., Saedler, H., and Thiessen, G., 1999. MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc. Natl. Acad. Sci. USA 96: 7342-7347.

Wolfe, K.H., M. Gouy, Y.-W. Yang, P.M. Sharp & W.-H. Li., 1989. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. U.S.A. 86: 6201-6205.



Occam's Razor: A process of deductive reasoning where the simplest explanation using the fewest assumptions or unknowns is considered as the most likely explanation, unless it can be falsified. Then the next simplest explanation is tested, and if it fails, the third simplest, etc.  See What is Occam's Razor?  Paul Dirac (1939) argues: "The law of parsimony [= simplicity or Occam's Razor] is no substitute for insight, logic and the scientific method.  It should never be relied upon to make or defend a conclusion.  As arbiters of correctness only logical consistency and empirical evidence are absolute."

alveolar: Spongy or chambered exine wall layer, typical of gymnosperm pollen.

amphivasal: amphi for around or on both sides; vas L. for vessel or vasculature.

angiosperm: Any plant of the class (Angiospermae) having the seeds in an enclosed ovary.

angiospermid: Resembling or like that of an angiosperm; having a possible affinity with angiosperms.

angiophyte: Any member of the angiosperms, its crown-group or its stem-group of ancestors and relatives (modified from Doyle and Donoghue's Anthophyte theory by excluding anthophytes, Gnetales, and their gymnospermous relatives).

anthophyte: Any member of the (flower-producing) Gnetopsida, its relatives, sister-groups, and ancestors.

arborescent: Resembling a tree in growth structure or appearance; tree-like.

atectate: Without a tectum or lacking an outer exine layer supported by columellae.

auriculae: Ear-like extensions or protuberances on the outer surface of a pollen grain or spore wall.

bias: A propensity or prepossession; bent; prejudice; predilection; diagonal - not straight.

bordered pit: A pit in which the pit membrane is overarched by the secondary wall.

carpel: A modified leaf in the center of a flower that encloses one or more ovules; a carpel consists of an ovary, style (if present), and stigma; all the carpels together form the gynoecium or pistil.

clavae: Club-shaped sculptural element on the outer surface of a pollen grain or spore wall.

columellar: A structural type of exine consisting of rod-shaped element (part of the ectexine) vertically oriented between two wall layers.

crown-group: A group of closely-related plants representing the last or most recent expression of an evolutionary radiation.

dichogamy: Male and female organs in separate flowers on a reproductive structure.

dioecious (dioecy): A condition in which ovule- and pollen-bearing structures are borne on separate plants; all dioecious plants have unisexual reproductive structures (contrast monoecious).

diospora: Another name for a seed or propogule.

diploid: Having two sets of chromosomes in each body cell (2n) (contrast polyploid; haploid).

dicotyledonous: An angiosperm embryo having two cotyledons (first leaves); a member of the dicots.
disulcate: A pollen type having two (normally distal) sulci.

dogma: That which is held as an opinion; esp., a definite tenet; also, a code of such tenets (contrast scientifically established hypotheses, theories, and facts).

ectexine (ektexine): The outer layer of the two layers of the exine of spores and pollen, normally more densely or deeply staining than the endexine, and characterized by richly detailed external sculpture and often by complex internal structure of granules, columellae, and other elements.

endexine: The inner, usually homogeneous layer of the two layers of the exine of spores and pollen, normally less deeply staining than the ectexine.

eoangiosperm: The oldest or very first angiosperms.

eudicots: One of three primary branches in the angiosperm phylogenetic tree, consisting of Ranunculidae, Hamamelidae, and "higher" eudicots (Doyle and Donoghue, 1993)(contrast paleoherbs and woody magnoliids).

exine: Acid-insoluble biopolymers making up the outer cell wall layers of pollen and spores.

follicles: A dry, unilocular angiosperm fruit type characterized by longitudinal dehiscence via a suture on one side; a follicle is formed from a single carpel and contains more than one seed.

gametophyte: The haploid (n) phase of a plant life cycle on which gametes are produced (contrast sporophyte).

granular: A structural type of exine consisting of small granules (part of the ectexine) sandwiched between the wall layers.

gymnosperm: Any plant of the class (Gymnospermae) having its naked (exposed) seeds fertilized directly by pollen entering a micropyle on the seed.

habit: The form a plant takes.

haploid: Having a single set of chromosomes in a cell (n) (contrast polyploid; diploid).

herbaceous: A plant having little or no secondary development; nonwoody.

heterozygote (heterozygous): Biol. An animal or plant containing genes for both members of at least one pair of allelomorphic Mendelian characters (contrast homozygote).

hilum: The scar or point of attachment of a seed to carpel wall.

homozygote (homozygous): Biol. An animal or plant containing either member (not both) of at least one pair of allelomorphic Mendelian characters (contrast heterozygote).

imperforate: Without holes or perforations in the tectum or outermost exine wall layer of pollen grains.
inflorescence: A cluster of flowers or a single flower.

karyophyte: A cell or cells which each possesses a nucleus containing chromosomes.

laminated: A structural type of inner wall layer (endexine) of pollen grains, consisting of thin layers which can be of similar composition (staining) or which can alternate in composition (light- and dark-stained lamellae).

macroflora: The plants or vegetation that make up a floral community (contrast microflora; spores and pollen).

magnoliid: Any plant belonging to or resembling members of the Magnoliidae.

meiosis: A type of cell division that produces four haploid gametes; reduction division; two rounds of cell division: Meiosis I (like mitosis) and meiosis II (where chromosomes separate into individual strands and reduction in genome occurs), each divisible into four phases: prophase, metaphase, anaphase, and telophase (contrast mitosis).

micropyle: A small opening in the integument at the apex of a seed through which either the pollen (in gymnosperms) or the pollen tube (in angiosperms) enters.

monocotyledonous: An angiosperm embryo having only one cotyledon (first leaf); a member of the monocots.

monoecious (monoecy): Bearing both pollen- and ovule-producing organs on the same plant; the flowers can be either unisexual or they can be bisexual (both types in a single fructification )(contrast dioecious).

monosulcate: A pollen grain having a single, normally distal sulcus (synonym monocolpate).

morphotype: A type of palynomorph defined by its shape, aperture(s), and exine structure.

multilacunar: multi L. for many, more; lacuna L. for cavity, hollow, cavern; in reference to the number of spaces or gaps in a vascular cylinder for leaf and branch vascular traces.

mybp: Million years before present.

nucleotide: A reference to the nucleic acid bases making up the backbone of DNA and RNA molecules.

cyte: An egg before maturation (i.e. the formation of the polar bodies).

oögonium: 1) Bot. The female sexual organ in oögamous thallophytic plants, containing one or more eggs, or oöspheres, which develop after fertilization into oöspores. 2. Embryol. One of the descendants of a primordial germ cell which give rise to the oöcytes.

paleobotanist: A person who studies fossil plants.

paleoherbs: One of three primary branches in the angiosperm phylogenetic tree, consisting of the Nymphaeales, Piperales, monocots, and Aristolociaceae (Doyle and Donoghue, 1993)(contrast eudicots and woody magnoliids).

palynologist: A person who studies spores and pollen.

palynomorph: A microscopic, resistant-walled organic body found in palynologic maceration residues; a palynologic study object. Palynomorphs include pollen, spores of many sorts, acritarchs, dinoflagellate thecae and cysts, certain colonial algae, scolecodonts, chitinozoans, and other acid-insoluble microfossils.

phylogeny: The race history of an animal or plant type (contrast ontogeny).

pit: A recess or thin place in the cell wall; a place where fluid movement from cell to cell can occur and be controlled.

plesiomorphic: pleisio(s) = near; morpho = form; characteristics which unite distant relatives through similar (near) form; characteristics which are found in a group's ancestors.

polyaperturate: Pollen grains having more than one sulcus or aperture (usually more than two sulci).

polyplicate: Pollen with parallel ridges and furrows, which can be straight from one end of the grain to the other, twisted or spiralling, or even rotated and clasping.

prolongation: An extension in space, well beyond the surrounding or adjacent surface.

psilate: A sculptural type that is smooth with no sculptural elements on the outer surface of the exine in spores and pollen.

radiation: An evolutionary/genetic process by which diversity rapidly increases and new species, genera, and families of animals or plants evolve from one or more closely closely-related ancestors; if the radiation continues long enough (millions of years), new orders, subclasses, and classes of animals and plants can evolve.

receptacle: The enlarged end of a flower stalk that bears the floral organs.

reticulum: A type of multiperforate tectum in which the perforations form a net-like pattern.
riparian: Growing by rivers or streams.

scalariform pitting: Elongate pits arranged parallel so s to form a ladder-like (scalariform) pattern.
selfing: The reproductive process by which a plant fertilizes itself.

semitectate: A structural type of exine in pollen where the outer wall layer (tectum - typically a large reticulum) does not conceal, touch, or connect to all of the internal structural elements, usually columellae.

sexine: The more or less arbitrarily delimited outer division of the exine of pollen.

sporophyte: The diploid (2n) phase of a plant life cycle, which produces spores (contrast gametophyte).

stelar: Relating to or of the stele.

stele: conceived by Van Tieghem as a morphological unit of the plant body comprising the vascular system and the associated ground tissue (pericycle, inerfascicular regions, and pith). The central cylinder of the axis (stem and root).

stem-group: A group of closely-related plants representing the first or most ancient expression of an evolutionary radiation and its ancestry.

stigma: The distal portion of a carpel that functions as a receptive surface for pollen.

sulcus: An elongate aperture (furrow) in the exine of pollen grains. The term is usually restricted to a distal furrow of pollen grains with only one such aperture, when this furrow has the distal pole of the pollen grain in its center.

synapomorphous: syn = together; apo = separate; morpho = form; characteristics which unite separate species in taxonomic classification, indicating that those species are related in that phylogenetic scheme.

synapomorphy: A characteristic which unites separate species, and indicates that they are phylogenetically related.

taxonomic: Of or pertaining to the classification of animals and plants according to their natural relationships; also of the laws and principles of such classification.

tectate: Of a pollen grain whose ectexine has an outer surface (wall layer) supported by more or less complicated inner structure usually consisting of columellae supporting the tectum.

tectum: The surface or outermost wall layer of tectate pollen grains.

tetrasulcate: A pollen grain having four (4) elongate distal sulci which parallel one another; the lateral-most sulci may be in an equatorial position relative to the poles of the pollen grain.

tracheophytes: Any plant which has tracheary elements, water-conducting cells in the xylem of vascular plants; vessels and tracheids are the two types of tracheary elements; they both have walls with secondary thickenings in a variety of patterns; vessels have perforation plates in their walls.

tribes: A category of classification usually equivalent to, or ranking just below, a suborder; also, often, any natural group irrespective of taxonomic rank; as, the cat tribe.

tricolpate: A pollen grain with three equidistant sulci positioned globally and oriented with the poles of the pollen grain; tricolpate pollen invariably has radial symmetry.

trisulcate: A pollen grain with three sulci positioned distally and oriented 90 degrees to the axis and poles of the pollen grain; trisulcate pollen invariably has bilateral symmetry.

woody magnoliids: One of three primary branches in the angiosperm phylogenetic tree, consisting of the winderoids, Laurales, and magnoliales (Doyle and Donoghue, 1993)(contrast eudicots and paleoherbs).

zonasulcate: A pollen grain with a ring sulcus usually positioned along the equator as determined by the orientation of the poles of the grain.

The glossary was created with the help of glossaries and definitions in the following books:
Anatomy of Seed Plants by Katherine Esau (1966)
Composition of Scientific Words by Roland W. Brown (1978)
Paleopalynology by Alfred Traverse (1988)
The Biology and Evolution of Fossil Plants by Thomas N. Taylor and Edith L. Taylor (1993)
Webster's New Collegiate Dictionary (1961)

Return to First Half

Return to Second Half

Return to Table of Contents